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Redfish Integration / Usage

Agenda

∙ Introduction

∙ Redfish overview from an Open Source software person’s context

∙ Then, an evolving progression of

– Accessing the Redfish API and Data Model contents

– Start manipulating the target hardware to match what the overall use case requires

– Leveraging all the pieces for an end-to-end deployment / solution



Overview of Redfish

From a software person’s context

∙ Yet another way to access a Baseboard Management Controller (BMC)

– Bonus points

∙ Superset of functionality compared to IPMI

∙ Standardized approach across hardware partner platforms

∙ Provides / utilizes a REST API approach

– Bonus points

∙ Lots of possible ways to integrate

∙ Composable, converged, hybrid-IT option to extend the software defined data center concept

∙ Feels almost cloud-native like: a versioned API approach to manage the hardware that software lands upon 

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface


First steps



1st steps : accessing the API/Data Model

Start simple

∙ Via curl, interactive to scripted CLI walk through

– literally started with a Google “linux redfish curl examples” search

∙ Setup curl options

∙ Validated access URL and credentials

∙ Formatted output into readable (JSON)

∙ Explored a subset of the data model

∙ Scripted a poll across several systems

CC BY-NC-SA 3.0 - https://www.wikihow.com/Float-on-Your-Back

https://www.wikihow.com/Float-on-Your-Back


Accessing the Redfish API
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Ok … worked

… but output not 

entirely

human readable



man jq ;)
Slice, filter, map and 

transform structured data



with jq



Cheat-sheet : 1/2 - Know you environment

BMC_IP=172.16.30.1

BMC_USER=ADMIN 

BMC_PASS=ADMIN 

# Install redfishtool (CLI)

git clone https://github.com/DMTF/Redfishtool.git 

cd Redfishtool/ python3 redfishtool.py -r ${BMC_IP} -u ${BMC_USER} -p ${BMC_PASS} Systems -F

for BMC_IP in 10.0.1.11 10.0.1.12 10.0.1.13; do

python3 redfishtool.py -r ${BMC_IP} -u ${BMC_USER} -p ${BMC_PASS} Systems -F | jq .SerialNumber

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .IndicatorLED

Done

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis list

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I 1

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I HA-RAID.0.StorageEnclosure.0

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .UUID 

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .IndicatorLED

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I 1 setIndicatorLed Off 

BMC_IP=$(dig +short node1.example.com)

unset https_proxy



# get firmware versions

# BMC

python3 redfishtool.py -r ${BMC_HOST} -u ${BMC_USER} -p ${BMC_PASS} Managers -F | jq .FirmwareVersion

curl -s https://${BMC_IP}/redfish/v1/Managers/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .FirmwareVersion

# BIOS python3 redfishtool.py -r ${BMC_HOST} -u ${BMC_USER} -p ${BMC_PASS} Systems -F | jq .BiosVersion

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .BiosVersion

# System manufactor

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .Manufacturer

# System model

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PartNumber

# get serial curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .UUID 

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .SerialNumber

curl -s https://${BMC_IP}/redfish/v1/Chassis/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .SerialNumber

# get CPU information curl -s https://${BMC_IP}/redfish/v1/Systems/1/Processors/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Model 

curl -s https://${BMC_IP}/redfish/v1/Systems/1/Processors/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .TotalCores

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .ProcessorSummary.Count

# ram total

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .MemorySummary.TotalSystemMemoryGiB

# ram modules

curl -k -u ${BMC_USER}:${BMC_PASS} -s https://${BMC_IP}/redfish/v1/Systems/1/Memory | jq ".Members | length"

# get BMC settings

curl -s https://${BMC_IP}/redfish/v1/Managers/1/EthernetInterfaces/2 -k -u ${BMC_USER}:${BMC_PASS} | jq .IPv4Addresses[0].Address

# get Health

curl -s https://${BMC_IP}/redfish/v1/Chassis/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Status.Health

# get IndicatorLED curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .IndicatorLED

# fan mode curl -s https://${BMC_IP}//redfish/v1/Managers/1/FanMode -k -u ${BMC_USER}:${BMC_PASS} | jq .Mode

# storageb curl -s https://${BMC_IP}/redfish/v1/Systems/1/SimpleStorage/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Devices[].Model

# raid

curl -s https://${BMC_IP}/redfish/v1/Chassis/HA-RAID.0.StorageEnclosure.0 -k -u ${BMC_USER}:${BMC_PASS} | python -m json.tool

curl -s https://${BMC_IP}/redfish/v1/Chassis/HA-RAID.0.StorageEnclosure.0/Drives/Disk.Bay.0 -k -u ${BMC_USER}:${BMC_PASS} | python -m json.tool

curl -k https://BMC_IP/registries/BiosAttributeRegistry.v1_0_0.json | python -m json.tool

curl -s https://BMC_IP/redfish/v1/Chassis/1/Thermal -k -u ADMIN:ADMIN | python -m json.tool

# power consumption

curl -s https://${BMC_IP}/redfish/v1/Chassis/1/Power/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PowerControl[].PowerConsumedWatts

curl -s https://${BMC_IP}/redfish/v1/Chassis/1/Power/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PowerControl[].PowerMetrics.AverageConsumedWatts

Cheat-sheet : 2/2 - Game is opened



Exploring the Data Model
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Simplified Scaling of Information Gathering
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Other possible calls

Of course, a lot more ways this can be also exercised

∙ Redfish API

∙ Exploring Data Model

– Redfish Developer Hub ( see Mockups )

∙ Programmatic Interfaces

– Language bindings : C, Javascript, Powershell, Python, Ruby, …

– DevOps : Ansible, Chef, Nagios, Puppet, ...

https://www.dmtf.org/standards/redfish
https://redfish.dmtf.org/redfish/v1
https://github.com/DMTF


Additional references

Homework exercises left for the reader

∙ Dell-related

– Knowledge Base - Redfish

∙ Fujitsu

– iRMC Redfish API Specifications

– Redfish White Paper

∙ HPE-related

– iLO RESTful API

– iLO RESTful API Explorer

∙ Intel

– Redfish, RESTful and x-UEFI

∙ Lenovo-related

– xClarity Controller Redfish REST API

∙ Supermicro

– Server Management (Redfish API)

∙ ...

https://www.dell.com/support/article/us/en/04/sln310624/redfish?lang=en
http://manuals.ts.fujitsu.com/file/13377/irmc-redfish-spec-en.pdf
http://manuals.ts.fujitsu.com/file/13372/irmc-redfish-wp-en.pdf
https://developer.hpe.com/platform/ilo-restful-api/home
https://ilorestfulapiexplorer.ext.hpe.com/
https://software.intel.com/en-us/blogs/2016/05/25/firmware-modern-data-center
https://sysmgt.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.systems.management.xcc.doc%2Frest_api.html
https://www.supermicro.com/en/solutions/management-software/redfish


2nd step



Understand the target

CC BY-NC-SA 3.0 - https://www.wikihow.com/Tread-Water

Helping the hardware-challenged (aka software folks)

∙ Beyond the on-line Mockups ...

– Visit GitHub openStack/python-redfish

∙ git clone

∙ Install a container run-time engine

∙ In dmtf/mockup*, build, run, use the container

– Homework left as an exercise for the reader

∙ You can install (from src, PyPi, or packages the redfish-client )

https://www.wikihow.com/Tread-Water
https://github.com/openstack/python-redfish
https://pythonhosted.org/python-redfish/installation.html


New tools

Other techniques and/or target resources ...

SUSE Manager / Uyuni
Opensource software management solution

Leverages Saltstack, and starting development of a Redfish integration - openSUSE/redfish
Query/select/configure + de-configure/de-select/return to a known state 

The hardware needed to match the desired software workloads as part of the overall deployment lifecycle

salt-call redfish.set_property IndicatorLED “Blinking” … (or “Off”)

Terraform
Starting to leverage this technology, which matches quite well with the underlying infrastructure

restapi provider to interact with Redfish

terraform-provider-oneview overlay that works with the HPE Composable Infrastructure APIs

about:blank
https://www.uyuni-project.org/
https://github.com/saltstack/salt
https://github.com/openSUSE/salt-redfish
https://github.com/hashicorp/terraform
https://github.com/Mastercard/terraform-provider-restapi
https://github.com/HewlettPackard/terraform-provider-oneview


More choices

Continually exploring some new and some existing options

∙ In the end, the true value proposition of open source for users is “freedom of choice”

– So with the trends of

∙ Software-Defined Infrastructure

∙ Migration to Infrastructure-as-Code

∙ Cloud-Native computing principles (everything is really an API/version)

– Providing choices in each matrix element and layer approach is highly desirable



The Bento Project



Bento : manage end-to-end deployment



Hardware: HPE Apollo 2000 + 4 x XL170r

+ 4x

Rack your servers then connect power & network

First / BMC: update & setup the iLO interfaces



Redfish: BIOS’ easy mass setup

Second / BIOS: Date and time, performance mode, CPU & Memory tweaking, disks allocation, boot sequence…



Redfish: Ceph’s easy mass controllers setup

Without Redfish: (1 x RAID-0 per drive) x 24 = PAIN

Redfish: 1 x RAID-0 per drive in a « for » loop = EASY
Third / Disks Controllers:

Mainly MAC Adresses and servers’ resourcesFourth / Gathering data:



Redfish: Thank you

Redfish usage for this deployment is done.

It will be back for platform monitoring and lifecycle.

We can now use our scripts and software automation for:

Bare-metal automated deployment with a prepared USB key > Each node becomes a SLES KVM

KVM automation > Nodes are populated with VMs enveloppes using a CSV file

NTP / DNS / DHCP setup > Each node gets a VM deployed for such a role

Ceph cluster deployment > Using VMs (careful, support warning!)

Kubernetes cluster & registry deployment > Linked to the Ceph cluster

(optional) Cloud Foundry deployment > Based on kubernetes deployment



Summary

So interesting to explore / discover / leverage 

∙ Redfish integration is an ever expanding utility / frontier

∙ Allows boundary crossing from developers

to operations and across the classic IT silos

∙ Game Meet On!



Questions



Thank You
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