
Staged Evolution of Integrating with Redfish
Interacting with hardware resources from a software perspective

Bryan Gartner

Sr. Technology Strategist

SUSE / bryan.gartner@suse.com

Redfish Integration / Usage

Agenda

∙ Introduction

∙ Redfish overview from an Open Source software person’s context

∙ Then, an evolving progression of

– Accessing the Redfish API and Data Model contents

– Start manipulating the target hardware to match what the overall use case requires

– Leveraging all the pieces for an end-to-end deployment / solution

Overview of Redfish

From a software person’s context

∙ Yet another way to access a Baseboard Management Controller (BMC)

– Bonus points

∙ Superset of functionality compared to IPMI

∙ Standardized approach across hardware partner platforms

∙ Provides / utilizes a REST API approach

– Bonus points

∙ Lots of possible ways to integrate

∙ Composable, converged, hybrid-IT option to extend the software defined data center concept

∙ Feels almost cloud-native like: a versioned API approach to manage the hardware that software lands upon

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

First steps

1st steps : accessing the API/Data Model

Start simple

∙ Via curl, interactive to scripted CLI walk through

– literally started with a Google “linux redfish curl examples” search

∙ Setup curl options

∙ Validated access URL and credentials

∙ Formatted output into readable (JSON)

∙ Explored a subset of the data model

∙ Scripted a poll across several systems

CC BY-NC-SA 3.0 - https://www.wikihow.com/Float-on-Your-Back

https://www.wikihow.com/Float-on-Your-Back

Accessing the Redfish API

man curl ;)

quiet

mode

deal with

self-signed

BMC certificate

BMC

user credential

(password will

be

prompted for)

extra

header

request

just

request

data

BMC

IP

Address

(and

protocol)

Use the

Redfish top of

API path

and current

version

Ok … worked

… but output not

entirely

human readable

man jq ;)
Slice, filter, map and

transform structured data

with jq

Cheat-sheet : 1/2 - Know you environment

BMC_IP=172.16.30.1

BMC_USER=ADMIN

BMC_PASS=ADMIN

Install redfishtool (CLI)

git clone https://github.com/DMTF/Redfishtool.git

cd Redfishtool/ python3 redfishtool.py -r ${BMC_IP} -u ${BMC_USER} -p ${BMC_PASS} Systems -F

for BMC_IP in 10.0.1.11 10.0.1.12 10.0.1.13; do

python3 redfishtool.py -r ${BMC_IP} -u ${BMC_USER} -p ${BMC_PASS} Systems -F | jq .SerialNumber

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .IndicatorLED

Done

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis list

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I 1

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I HA-RAID.0.StorageEnclosure.0

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .UUID

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Systems -F | jq .IndicatorLED

python3 redfishtool.py -r $BMC_IP -u $BMC_USER -p $BMC_PASS Chassis -I 1 setIndicatorLed Off

BMC_IP=$(dig +short node1.example.com)

unset https_proxy

get firmware versions

BMC

python3 redfishtool.py -r ${BMC_HOST} -u ${BMC_USER} -p ${BMC_PASS} Managers -F | jq .FirmwareVersion

curl -s https://${BMC_IP}/redfish/v1/Managers/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .FirmwareVersion

BIOS python3 redfishtool.py -r ${BMC_HOST} -u ${BMC_USER} -p ${BMC_PASS} Systems -F | jq .BiosVersion

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .BiosVersion

System manufactor

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .Manufacturer

System model

curl -s https://${BMC_IP}/redfish/v1/Systems/1/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PartNumber

get serial curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .UUID

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .SerialNumber

curl -s https://${BMC_IP}/redfish/v1/Chassis/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .SerialNumber

get CPU information curl -s https://${BMC_IP}/redfish/v1/Systems/1/Processors/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Model

curl -s https://${BMC_IP}/redfish/v1/Systems/1/Processors/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .TotalCores

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .ProcessorSummary.Count

ram total

curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .MemorySummary.TotalSystemMemoryGiB

ram modules

curl -k -u ${BMC_USER}:${BMC_PASS} -s https://${BMC_IP}/redfish/v1/Systems/1/Memory | jq ".Members | length"

get BMC settings

curl -s https://${BMC_IP}/redfish/v1/Managers/1/EthernetInterfaces/2 -k -u ${BMC_USER}:${BMC_PASS} | jq .IPv4Addresses[0].Address

get Health

curl -s https://${BMC_IP}/redfish/v1/Chassis/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Status.Health

get IndicatorLED curl -s https://${BMC_IP}/redfish/v1/Systems/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .IndicatorLED

fan mode curl -s https://${BMC_IP}//redfish/v1/Managers/1/FanMode -k -u ${BMC_USER}:${BMC_PASS} | jq .Mode

storageb curl -s https://${BMC_IP}/redfish/v1/Systems/1/SimpleStorage/1 -k -u ${BMC_USER}:${BMC_PASS} | jq .Devices[].Model

raid

curl -s https://${BMC_IP}/redfish/v1/Chassis/HA-RAID.0.StorageEnclosure.0 -k -u ${BMC_USER}:${BMC_PASS} | python -m json.tool

curl -s https://${BMC_IP}/redfish/v1/Chassis/HA-RAID.0.StorageEnclosure.0/Drives/Disk.Bay.0 -k -u ${BMC_USER}:${BMC_PASS} | python -m json.tool

curl -k https://BMC_IP/registries/BiosAttributeRegistry.v1_0_0.json | python -m json.tool

curl -s https://BMC_IP/redfish/v1/Chassis/1/Thermal -k -u ADMIN:ADMIN | python -m json.tool

power consumption

curl -s https://${BMC_IP}/redfish/v1/Chassis/1/Power/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PowerControl[].PowerConsumedWatts

curl -s https://${BMC_IP}/redfish/v1/Chassis/1/Power/ -k -u ${BMC_USER}:${BMC_PASS} | jq .PowerControl[].PowerMetrics.AverageConsumedWatts

Cheat-sheet : 2/2 - Game is opened

Exploring the Data Model

Read

authentication

credentials

from a file
(tells curl to look for

and use the .netrc file)

Grab

sub-tree of

data

model

Page

through the

output in a

“screenful”

way

Simplified Scaling of Information Gathering

Wrap into

a shell

script

Loop

through

several

BMC

IP ranges

Extract a

specific

name/value

item

Other possible calls

Of course, a lot more ways this can be also exercised

∙ Redfish API

∙ Exploring Data Model

– Redfish Developer Hub (see Mockups)

∙ Programmatic Interfaces

– Language bindings : C, Javascript, Powershell, Python, Ruby, …

– DevOps : Ansible, Chef, Nagios, Puppet, ...

https://www.dmtf.org/standards/redfish
https://redfish.dmtf.org/redfish/v1
https://github.com/DMTF

Additional references

Homework exercises left for the reader

∙ Dell-related

– Knowledge Base - Redfish

∙ Fujitsu

– iRMC Redfish API Specifications

– Redfish White Paper

∙ HPE-related

– iLO RESTful API

– iLO RESTful API Explorer

∙ Intel

– Redfish, RESTful and x-UEFI

∙ Lenovo-related

– xClarity Controller Redfish REST API

∙ Supermicro

– Server Management (Redfish API)

∙ ...

https://www.dell.com/support/article/us/en/04/sln310624/redfish?lang=en
http://manuals.ts.fujitsu.com/file/13377/irmc-redfish-spec-en.pdf
http://manuals.ts.fujitsu.com/file/13372/irmc-redfish-wp-en.pdf
https://developer.hpe.com/platform/ilo-restful-api/home
https://ilorestfulapiexplorer.ext.hpe.com/
https://software.intel.com/en-us/blogs/2016/05/25/firmware-modern-data-center
https://sysmgt.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.systems.management.xcc.doc%2Frest_api.html
https://www.supermicro.com/en/solutions/management-software/redfish

2nd step

Understand the target

CC BY-NC-SA 3.0 - https://www.wikihow.com/Tread-Water

Helping the hardware-challenged (aka software folks)

∙ Beyond the on-line Mockups ...

– Visit GitHub openStack/python-redfish

∙ git clone

∙ Install a container run-time engine

∙ In dmtf/mockup*, build, run, use the container

– Homework left as an exercise for the reader

∙ You can install (from src, PyPi, or packages the redfish-client)

https://www.wikihow.com/Tread-Water
https://github.com/openstack/python-redfish
https://pythonhosted.org/python-redfish/installation.html

New tools

Other techniques and/or target resources ...

SUSE Manager / Uyuni
Opensource software management solution

Leverages Saltstack, and starting development of a Redfish integration - openSUSE/redfish
Query/select/configure + de-configure/de-select/return to a known state

The hardware needed to match the desired software workloads as part of the overall deployment lifecycle

salt-call redfish.set_property IndicatorLED “Blinking” … (or “Off”)

Terraform
Starting to leverage this technology, which matches quite well with the underlying infrastructure

restapi provider to interact with Redfish

terraform-provider-oneview overlay that works with the HPE Composable Infrastructure APIs

about:blank
https://www.uyuni-project.org/
https://github.com/saltstack/salt
https://github.com/openSUSE/salt-redfish
https://github.com/hashicorp/terraform
https://github.com/Mastercard/terraform-provider-restapi
https://github.com/HewlettPackard/terraform-provider-oneview

More choices

Continually exploring some new and some existing options

∙ In the end, the true value proposition of open source for users is “freedom of choice”

– So with the trends of

∙ Software-Defined Infrastructure

∙ Migration to Infrastructure-as-Code

∙ Cloud-Native computing principles (everything is really an API/version)

– Providing choices in each matrix element and layer approach is highly desirable

The Bento Project

Bento : manage end-to-end deployment

Hardware: HPE Apollo 2000 + 4 x XL170r

+ 4x

Rack your servers then connect power & network

First / BMC: update & setup the iLO interfaces

Redfish: BIOS’ easy mass setup

Second / BIOS: Date and time, performance mode, CPU & Memory tweaking, disks allocation, boot sequence…

Redfish: Ceph’s easy mass controllers setup

Without Redfish: (1 x RAID-0 per drive) x 24 = PAIN

Redfish: 1 x RAID-0 per drive in a « for » loop = EASY
Third / Disks Controllers:

Mainly MAC Adresses and servers’ resourcesFourth / Gathering data:

Redfish: Thank you

Redfish usage for this deployment is done.

It will be back for platform monitoring and lifecycle.

We can now use our scripts and software automation for:

Bare-metal automated deployment with a prepared USB key > Each node becomes a SLES KVM

KVM automation > Nodes are populated with VMs enveloppes using a CSV file

NTP / DNS / DHCP setup > Each node gets a VM deployed for such a role

Ceph cluster deployment > Using VMs (careful, support warning!)

Kubernetes cluster & registry deployment > Linked to the Ceph cluster

(optional) Cloud Foundry deployment > Based on kubernetes deployment

Summary

So interesting to explore / discover / leverage

∙ Redfish integration is an ever expanding utility / frontier

∙ Allows boundary crossing from developers

to operations and across the classic IT silos

∙ Game Meet On!

Questions

Thank You

51

Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC.

Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their

assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged,

condensed, expanded, collected, or adapted without the prior written consent of SUSE.

Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a

commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE

makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or

implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or

functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this

document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or

changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United

States and other countries. All third-party trademarks are the property of their respective owners.

