
Redfish Interoperability Profiles
DMTF Scalable Platforms Management Forum

October 2017

Disclaimer

• The information in this presentation represents a snapshot of work in
progress within the DMTF.

• This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

• For additional information, see the Distributed Management Task Force
(DMTF) website.

2

Goals

• An “Interoperability Profile” provides a common ground for Service
implementers, client software developers, and users
• A profile would apply to a particular category or class of product (e.g. “Front-end web

server”, “NAS”, “Enterprise-class database server”)
• It specifies Redfish implementation requirements, but is not intended to mandate

underlying hardware/software features of a product
• Provides a target for implementers to meet customer requirements
• Provide baseline expectations for client software developers utilizing Redfish
• Enable customers to easily specify Redfish functionality / conformance in RFQs

• Create a machine-readable Profile definition
• Document must be human-readable
• Can be created by dev/ops personnel and non-CS professionals

• Enable authoring of Profiles by DMTF, partner organizations, and others
• Create open source tools to document and test conformance

Implementation

• Redfish Interoperability Profile is a Machine-readable JSON document
• Schema-backed (RedfishProfile.v1_0_0) JSON definition
• This file will be read by conformance and documentation tools

• DMTF specification (DSP0272) provides instructions to create a profile
• Creating open source tools for conformance testing

• Leverages existing Redfish Conformance tools and applies profile requirements
• Creating a tool for generating profile documentation

• Documentation generator produces profile-specific schema/property view
• Uses a combination of the JSON profile document and a Markdown ‘supplement’
• Supplemental text provides context and clarification on the Profile’s purpose
• Tool can produce ‘for review’ output that shows schemas and properties that are not

included (no requirements) in the profile definition

Profile Document Functionality
• Required resources (schema), objects, or properties

• Simple requirements apply to every instance of the Resource
• Conditional requirements make additions for specific cases

• “If Implemented” resources, object, or properties
• Must appear if underlying feature is implemented in the product

• Example: Fan[] array required in Chassis that have fans…
• “If Implemented” conformance usually not testable by automated tools

• Conditional Requirements
• Items required under certain circumstances or for sub-classes of products
• Based on values of adjacent properties or location in the resource tree

• Example: EthernetInterface resource required under each ‘Manager’

• Registry Requirements
• Support for standard messages for errors and events

5

JSON DOCUMENT FORMAT
Redfish Interoperability Profiles

6

Redish Interoperability Profile Document

• JSON document with simple structure to list resources and properties
• Format allows easy comparison to a retrieved Redfish payload

• Ex. “PropertyRequirements” object with Redfish properties
• Can build definition on top of other Profile(s)
• Apply requirements to Redfish Protocol features, Resources (Schemas),

Properties, Actions and Registries.
• Versioning support in both Profile and Resource requirements

• Profile is a static definition once published
• Does not increase in scope as schemas are revised

• Recommend that changes to profile occur with “major” revisions
• Allow for errata, but Profile should be built for longevity
• Example: “Basic Server v1”, “Basic Server v2”

7

Profile document structure

• Each section a JSON object
• Resource (schema) and

Registry objects follow the
names of the defining schema
• e.g. “EthernetInterface”

• Property-level requirement
nested within Resource
requirements, named to follow
the defined property name
• e.g. “AssetTag”, “SpeedMbps”

8

Profile info, Protocol requirements

Resource #1 requirements

Registry #1 requirements

Registry #N requirements

Resource #2 requirements

Resource #N requirements

…

Profile-level information and Protocol Requirements

"ProfileName": "Anchovy",
"Version": "1.0.2",
"Author": "Pizza Box Project",
"Purpose": "This is a sample Redfish profile.",
"ContactInfo": "pizza@contoso.com",
"RequiredProfiles": {
 "DMTFBasic": {

"MinVersion": "1.0.0",
},
 “ContosoPizza”: {

“OwningEntity”: “Other”,
“OwningEntityName”: “Contoso”
“Source”: “contoso.com/profiles”,
“MinVersion”: “1.0.0”

 }
 },
“ProtocolRequirements”: {

“MinVersion”: “1.0.0”,
“DiscoveryRequired”: false

},

• Basic information
• Name, version, author, etc.

• Ability to include other Profiles
to build upon past work
• But profile cannot loosen

requirements included from
other profiles, only add
additional requirements

• “Protocol requirements” are
Redfish features which are not
part of the JSON response
payload(s).

9

Resource (schema) level requirements

"ContosoTimeMachine": {
 "OwningEntity": "Other",
 "OwningEntityName": "Contoso",
 “Repository": "www.contoso.com/schemas",
 “ReadRequirement”: “Mandatory”,
 "MinVersion": "1.2.0",
 "PropertyRequirements": {

"CurrentTime": {},
"DestinationTime": {},
"IsGrandfatherAlive": {

 "Requirement": "Recommended"
},
"ParadoxDetected": {
 "Requirement": "IfImplemented"
}

 }
}

• Organized by schema name
• Profile can include requirements from

any number of standard or OEM-
defined schemas

• Resource level “ReadRequirement”
sets need for schema-required
properties

• Property level requirements contained
in resource-level object

• “MinVersion” – minimum schema
version required

10

Property level - basic features

"ComputerSystemCollection": {
 “PropertyRequirements”: {
 "Members": {

"MinCount": 1
 }
 }
},
"ComputerSystem": {
 "MinVersion": "1.1.0",
 "PropertyRequirements": {
 “SystemType”: {

“Values”: [“Physical”],
“ReadRequirement”: “Mandatory”

 },
 “AssetTag": {

“ReadRequirement": “Mandatory“,
“WriteRequirement”: “Mandatory”

 },
 "Manufacturer": {},
 "Model": {
 “ReadRequirement": "Recommended"
 },
 . . .

• JSON objects follow property names
• Un-listed properties have no requirements
• Empty objects are by default ‘Mandatory’

• “ReadRequirement”:
• Default value is ‘Mandatory’
• Recommended, If-Implemented, and

Conditional support
• “MinCount”:

• Minimum count of non-NULL items in array
• “WriteRequirement”:

• If property must support PATCH or PUT
• “Values”:

• Require specific or “any of” values for a
property. Also supports arrays

11

Property level – Conditional requirements
"EthernetInterface": {
 "PropertyRequirements": {
 "MACAddress": {},
 “HostName": {
 “ReadRequirement": "Recommended",
 “ConditionalRequirements": [{

 "SubordinateToResource":
 ["ComputerSystem“,
 ”EthernetInterfaceCollection”],
 “ReadRequirement": “Mandatory"
 }]
 },
 "IPv4Addresses": {
 “ReadRequirement": “Mandatory",
 "MinCount": 1,
 “ConditionalRequirements": [{

 "SubordinateToResource":
 ["ComputerSystem“,
 ”EthernetInterfaceCollection”],
 “ReadRequirement": “Mandatory“

 "MinCount": 2
 }]
}

• ‘ConditionalRequirements’
apply to the property if one or
more conditions are met

• ‘Purpose’ text provides
justification for the conditional
requirement

• SubordinateToResource
• If resource matches the parent

hierarchy, requirement applies
• Comparison Property / Values

• Using another property within
the resource as key, add
requirement if value of the key
matches a list

12

Property level – ‘Conditional’ Value example
"IndicatorLED": {
 “ReadRequirement": "Recommended",
 “WriteRequirement”: “Recommended”,
 "Conditions": [{
 "Purpose": "Physical and composed Systems
must have a writable Indicator LED“,
 “ReadRequirement": “Mandatory",
 “WriteRequirement”: “Mandatory”,
 “Comparison": "AnyOf",
 “CompareProperty": "SystemType",
 “CompareValues": ["Physical", "Composed“]
 }]
}

• ‘Comparison’ provides test
• ‘CompareProperty’ name

• May be at current object level
or in parent objects (no peers)

• ‘CompareValues’ – one or
more values to test against

• Requirement – applies if
condition met

• ‘ConditionalRequirements’ is an
array, allowing multiple
conditions for a given property

13

Action level features
“ActionRequirements": {
 "Reset": {
 “ReadRequirement": “Mandatory",
 "Parameters": {

"ResetType": {
 “MinSupportedValues": ["ForceOff", "PowerCycle"]
}

 }
 }
} • Organized by Action name

within each Resource (schema)
• Allows for parameter

requirements
• AllowableValues support

14

Registry level features
"Registries": {
 "Base": {
 "MinVersion": "1.0.0",
 "Source": "redfish.dmtf.org/registries",
 "Messages": {

"Success": {},
"GeneralError": {},
"Created": {},
"PropertyDuplicate": {}

 }
 },
 "ContosoPizzaMessages": {
 "OwningEntity": "Other",
 "OwningEntityName": "Contoso",
 “Repository": "contoso.com/registries",
 "ReadRequirement": “Mandatory"
 }
}

• Organized by registry name
• Allows for multiple registries
• Ability to include OEM registries
• Resource level

“ReadRequirement” sets need
for full Registry requirement

• Messages listed with individual
‘Requirement’ as needed

15

Q&A & Discussion

16

	Diapo 1
	Disclaimer
	Goals
	Implementation
	Profile Document Functionality
	Json document format
	Redish Interoperability Profile Document
	Profile document structure
	Profile-level information and Protocol Requirements
	Resource (schema) level requirements
	Property level - basic features
	Property level – Conditional requirements
	Property level – ‘Conditional’ Value example
	Action level features
	Registry level features
	Q&A & Discussion

