Redfish Interoperability Profiles

DMTF Scalable Platforms Management Forum
October 2017

Disclaimer

* The information in this presentation represents a snapshot of work in
progress within the DMTF.

* This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

* For additional information, see the Distributed Management Task Force
(DMTF) website.

Goals

An “Interoperability Profile” provides a common ground for Service
implementers, client software developers, and users

* A profile would apply to a particular category or class of product (e.g. “Front-end web

server’, “NAS”, “Enterprise-class database server”)

It specifies Redfish implementation requirements, but is not intended to mandate
underlying hardware/software features of a product

Provides a target for implementers to meet customer requirements
Provide baseline expectations for client software developers utilizing Redfish
Enable customers to easily specify Redfish functionality / conformance in RFQs
Create a machine-readable Profile definition
* Document must be human-readable
* Can be created by dev/ops personnel and non-CS professionals

Enable authoring of Profiles by DMTF, partner organizations, and others
Create open source tools to document and test conformance

www.dmif.org

Implementation

Redfish Interoperability Profile is a Machine-readable JSON document
* Schema-backed (RedfishProfile.v1 0 0) JSON definition
* This file will be read by conformance and documentation tools

DMTF specification (DSP0272) provides instructions to create a profile

Creating open source tools for conformance testing
* Leverages existing Redfish Conformance tools and applies profile requirements

Creating a tool for generating profile documentation
Documentation generator produces profile-specific schema/property view
Uses a combination of the JSON profile document and a Markdown ‘supplement’
Supplemental text provides context and clarification on the Profile’s purpose

Tool can produce ‘for review’ output that shows schemas and properties that are not
included (no requirements) in the profile definition

Profile Document Functionality

* Required resources (schema), objects, or properties
* Simple requirements apply to every instance of the Resource
* Conditional requirements make additions for specific cases
“If Implemented” resources, object, or properties

* Must appear if underlying feature is implemented in the product
* Example: Fan[] array required in Chassis that have fans...

* “If Implemented” conformance usually not testable by automated tools
Conditional Requirements
* Items required under certain circumstances or for sub-classes of products

* Based on values of adjacent properties or location in the resource tree
* Example: Ethernetinterface resource required under each ‘Manager’

Registry Requirements
* Support for standard messages for errors and events

www.dmif.org

Redfish Interoperability Profiles

JSON DOCUMENT FORMAT

Redish Interoperability Profile Document

* JSON document with simple structure to list resources and properties

Format allows easy comparison to a retrieved Redfish payload
* Ex. “PropertyRequirements” object with Redfish properties
Can build definition on top of other Profile(s)
Apply requirements to Redfish Protocol features, Resources (Schemas),
Properties, Actions and Registries.
* Versioning support in both Profile and Resource requirements

* Profile is a static definition once published
* Does not increase in scope as schemas are revised

* Recommend that changes to profile occur with “major” revisions
* Allow for errata, but Profile should be built for longevity
* Example: “Basic Server v1”, “Basic Server v2”

Profile document structure

[Profile info, Protocol requirements } Each section a JSON object

- ~ Resource (schema) and
Resource #1 requirements Registry objects follow the

names of the defining schema
* e.g. “Ethernetinterface”

Property-level requirement
N nested within Resource
- n requirements, named to follow

- the defined property name

-

Resource #2 requirements

N

 Registry #1 requirements

 Registry #N requirements

Profile-level information and Protocol Requirements

"ProfileName": "Anchovy",
"Version": "1.0.2",
"Author": "Pizza Box Project”,

"Purpose": "This is a sample Redfish profile.",

"ContactInfo": "pizza@contoso.com",
"RequiredProfiles": {

"DMTFBasic": {

"MinVersion": "1.0.0",

“ContosoPizza”: {
“OwningEntity”: “Other”,
“OwningEntityName”: “Contoso”

“Source”: “contoso.com/profiles”,

“MinVersion”: “1.0.0"

}
I

“ProtocolRequirements”: {
“MinVersion”: “1.0.0",
“DiscoveryRequired”: false

Basic information
* Name, version, author, etc.

Ability to include other Profiles
to build upon past work

* But profile cannot loosen
requirements included from
other profiles, only add
additional requirements

“Protocol requirements” are
Redfish features which are not
part of the JSON response
payload(s).

www.dmif.org

Resource (schema) level requirements

"ContosoTimeMachine": {
"OwningEntity": "Other",
"OwningEntityName": "Contoso",

“Repository": "www.contoso.com/schemas",

“ReadRequirement”: “Mandatory”,
"MinVersion": "1.2.0",
"PropertyRequirements": {
"CurrentTime": {3},
"DestinationTime": {},
"IsGrandfatherAlive": {
"Requirement"”: "Recommended"
o
"ParadoxDetected": {

"Requirement"”: "IfImplemented”

Organized by schema name

Profile can include requirements from
any number of standard or OEM-
defined schemas

Resource level “ReadRequirement”
sets need for schema-required
properties

Property level requirements contained
in resource-level object

“MinVersion” — minimum schema
version required

Property level - basic features

"ComputerSystemCollection": {

“PropertyRequirements”: {
"Members": {
"MinCount": 1

}
}
}

"ComputerSystem": {
"MinVersion": "1.1.0",
"PropertyRequirements": {
“SystemType”: {
“Values”: [“Physical”],
“ReadRequirement”: “Mandatory”

}I

“AssetTag": {
“ReadRequirement”: “Mandatory”,
“WriteRequirement”: “Mandatory”

b

"Manufacturer": {},
"Model": {

}I

“ReadRequirement": "Recommended"

JSON objects follow property names
* Un-listed properties have no requirements
* Empty objects are by default ‘Mandatory’
“ReadRequirement”:
* Default value is ‘Mandatory’

* Recommended, If-Implemented, and
Conditional support

“MinCount”:

* Minimum count of non-NULL items in array
“WriteRequirement”:

* If property must support PATCH or PUT
“Values™:

* Require specific or “any of” values for a
property. Also supports arrays

www.dmif.org

Property level — Conditional requirements

"EthernetInterface": { °

"PropertyRequirements”: { CondltlonaIRequwem_ents
"MACAddress”: {}, apply to the property if one or
“HostName": { e

more conditions are met

“ReadRequirement"”: "Recommended",

“ConditionalRequirements": [{ ‘Purpose’ text prOVideS

"SubordinateToResource":

["ComputerSystem, justification for the conditional
EthernetInterfaceCollection”], requirement

“ReadRequirement”: “Mandatory"

} }H SubordinateToResource

"IPv4Addresses”: { * If resource matches the parent
NQaUREgiigement”: “Mandatory”, hierarchy, requirement applies

"MinCount": 1,

“ConditionalRequirements”: [{ Comparison Property / ValueS
"SubordinateToResource": . o
["ComputerSystem”, ¢ USIﬂg another property within

"EthernetInterfaceCollection”], the resource as key add
“ReadRequirement": “Mandatory” ’

"MinCount": 2 requirement if value of the key
} matches a list

Property level — ‘Conditional’ Value example

"IndicatorLED": {
“ReadRequirement"”: "Recommended",
“WriteRequirement”: “Recommended”,
"Conditions": [{

"Purpose": "Physical and composed Systems
must have a writable Indicator LED“,

“ReadRequirement": “Mandatory",
“WriteRequirement”: “Mandatory”,
“Comparison": "AnyOf",
“CompareProperty": "SystemType",
“CompareValues": ["Physical", "Composed“]
}
}

‘Comparison’ provides test

‘CompareProperty’ name

* May be at current object level

or in parent objects (no peers)

‘CompareValues’ — one or
more values to test against
Requirement — applies if
condition met
‘ConditionalRequirements’ is an
array, allowing multiple
conditions for a given property

Action level features

“ActionRequirements”: {
"Reset": {
“ReadRequirement": “Mandatory",
"Parameters": {
"ResetType": {
“MinSupportedValues": ["ForceOff", "PowerCycle"]

Organized by Action name
within each Resource (schema)

Allows for parameter
requirements

AllowableValues support

Registry level features

"Registries": { Organized by registry name

"Base": {

"MinVersion": "1.0.0", Allows for multiple registries

"Source": "redfish.dmtf.org/registries",

"Messages": { Ability to include OEM registries

“Success": {},
"GeneralError": {}, Resource level
"Created": {}, “ . ”
“Propertybuplicate”s {} ReadRqulrement .sets need
} for full Registry requirement

},

"ContosoPizzaMessages": { I\/Iessages listed with individual
“OningEnELty” : "Other”, ‘Requirement’ as needed

"OwningEntityName": "Contoso",
“Repository": "contoso.com/registries",
"ReadRequirement": “Mandatory"

Q&A & Discussion

	Diapo 1
	Disclaimer
	Goals
	Implementation
	Profile Document Functionality
	Json document format
	Redish Interoperability Profile Document
	Profile document structure
	Profile-level information and Protocol Requirements
	Resource (schema) level requirements
	Property level - basic features
	Property level – Conditional requirements
	Property level – ‘Conditional’ Value example
	Action level features
	Registry level features
	Q&A & Discussion

